top of page

Microbial response to nutrient enrichment in the TIDE experiment

Salt marshes are among the most productive ecosystems on the plant and provide numerous ecosystem services to coastal areas. One of the key services marshes provide is the removal of anthropogenic nitrogen (N) before it reaches coastal waters. Excess N inputs to coastal systems has dramatically increased since the first World War and recent evidence suggests that there may be a tipping point with regard to how much nitrogen a salt marsh can remove. 

 

Microorganisms including bacteria, archaea, and fungi play key roles in removing anthropogenic N and provide a plethora of ecosystem services to salt marshes.  To determine the ecosystem level effects on salt marsh function, the TIDE project was started in 2004 in the Plum Island Ecosystems Long-term Ecological Research Site. The TIDE project experimentally added 70 µM nitrate to salt marsh creeks during every growing season tide from 2004-2016.

​

We have studies the microbial response to nitrate additions for many years. Key highlights include recognition that the form of N added to these systems is important, that nutrient enrichment doesn't alter the overall microbial community, but it dramatically shifts the active community to one that thrives using nitrate reduction. 

Papers associated with this work:

Mimosas on the marsh 2016 IMG_1068.jpg
Screen Shot 2021-04-15 at 9.09.42 AM.png

Bowen, J. L., A. E. Giblin, A. E. Murphy, A. N. Bulseco, L. A. Deegan, D. S. Johnson, J. A. Nelson, T. J. Mozdzer, and H. L. Sullivan. 2020. Not all nitrogen is created equal: differential effects of nitrate versus ammonium enrichment in coastal waters. BioScience 70: 1108-1120. https://doi.org/10.1093/biosci/biaa140

​

Murphy, A. E., A. N. Bulseco, R. Ackerman, J. Vineis, and J. L. Bowen. 2020. Sulphide addition favours respiratory ammonification (DNRA) over denitrification and alters the active microbial community in salt marsh sediments. Environmental Microbiology 22: 2124-2139.

​

Bulseco, A., J. H. Vineis, A. E. Murphy, A. C. Spivak, A. E. Giblin, J. Tucker, and J. L. Bowen. 2020.  Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments. Limnology and Oceanography 65: S321-S339.

Bowen, J. L., A. E. Giblin, A. E. Murphy, A. N. Bulseco, L. A. Deegan, D. S. Johnson, J. A. Nelson, T. J. Mozdzer, and H. L. Sullivan. 2020. Not all nitrogen is created equal: differential effects of nitrate versus ammonium enrichment in coastal waters. BioScience 70: 1108-1120. https://doi.org/10.1093/biosci/biaa140

​

Murphy, A. E., A. N. Bulseco, R. Ackerman, J. Vineis, and J. L. Bowen. 2020. Sulphide addition favours respiratory ammonification (DNRA) over denitrification and alters the active microbial community in salt marsh sediments. Environmental Microbiology 22: 2124-2139.

​

Bulesco, A., J. H. Vineis, A. E. Murphy, A. C. Spivak, A. E. Giblin, J. Tucker, and J. L. Bowen. 2020.  Metagenomics coupled with biogeochemical rates measurements provide evidence that nitrate addition stimulates respiration in salt marsh sediments. Limnology and Oceanography 65: S321-S339.

​

Spivak, A. C., J. Sanderman, J. L. Bowen, E. A. Canuel, and C. S. Hopkinson. 2019. Controls on soil carbon decomposition in coastal ecosystems in a changing world. Nature Geoscience 12: 685-692.

​

Bulseco A.N., A. E. Giblin, J. Tucker, J., A. E. Murphy, J.  Sanderman, K. Hiller-Bittrolff, and J. L. Bowen. 2020. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Global Change Biology 25: 3224-3241.

​

Kearns, P. J., D. Holloway, J. H. Angell, S. G. Feinman, and J. L. Bowen. 2017. Effects of short-term diel changes in environmental conditions on active microbial communities in a salt marsh pond.  Aquatic Microbial Ecology 80: 29-41.

​

Kearns, P. J., J. H. Angell, E. M. Howard, L. A. Deegan, R. H. R. Stanley, and J. L. Bowen. 2016. Nutrient enrichment induces dormancy and decreases diversity of active bacteria. Nature Communications 7: 12881. doi:10.1038/ncomms12881.

​

Kearns, P. J., N. B. Weston, J. L. Bowen, T. Zivkovic, and M. A. Vile. 2016. Tidal Freshwater m6arshes harbor phylogenetically unique clades of sulfate reducers that are resistant to climate change induced salinity intrusion. Estuaries and Coasts 39: 981. doi:10.1007/s12237-016-0067-3.

 

Kearns, P. K., J. H. Angell, S. G. Feinman, and J. L. Bowen. 2015. Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments. Estuarine, Coastal, and Shelf Science 154:39-47.

​

Bowen, J. L., J. E. K. Byrnes, D. Weisman, and C. Colaneri. 2013. Functional gene pyrosequencing and network analysis shed light on denitrifying bacteria in salt marsh sediments and their response to increased nitrogen supply. Frontiers in Microbiology 4:342 doi: 10.3389/fmicb.2013.00342.

​

Bowen, J. L., H. G. Morrison, J. E. Hobbie, and M. L. Sogin. 2012. Salt marsh sediment diversity: A test of the variability of the rare biosphere among environmental replicates. The ISME Journal 6: 2014-2023.

 

Bowen, J. L., B. B. Ward, H. G. Morrison, J. E. Hobbie, I. Valiela, L. A. Deegan, and M. L. Sogin. 2011. Microbial community composition in salt marsh sediments resists perturbation by nutrient enrichment. The ISME Journal 5: 1540-1548.

​

Bowen, J. L., B. C. Crump, L. A. Deegan, and J. E. Hobbie. 2009. Response of salt marsh sediment bacteria to external nitrogen inputs as measured by denaturing gradient gel electrophoresis. The ISME Journal 3: 924-934.

​

Bowen, J. L., B. C. Crump, L. A. Deegan, and J. E. Hobbie. 2009. Increased supply of ambient nitrogen has minimal effect on salt marsh bacterial production. Limnology and Oceanography 54: 713-722.

bottom of page